How far [55 marks]

1.

[Maximum mark: 16] Sulfur trioxide is an important compound in industry.				
(a)	Sulfur trioxide has more than one possible Lewis (electron dot) structure.			
(a.i)	Sketch a Lewis (electron dot) structure for SO_3 which obeys the octet rule.	[1]		
(a.ii)	Predict the length of each S to O bond in pm. Use section 10 of the data booklet.	[1]		
 (a.iii)	State the molecular geometry and the O-S-O bond angle in SO_3 .			
	Molecular geometry: Bond angle:	[2]		
(b)	Suggest why atmospheric $SO_3(g)$ is an environmental concern.	[1]		

(c)	State the name of a post-combustion method used to lower the quantity of SO_3 (g) released to the atmosphere.	[1]
(d)	SO_3 (g) is made using the contact process.	
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \Delta H^{\Theta} < 0$	
(d.i)	Sketch a potential energy profile for this reaction on the axes provided. Label E_a and include labels on the axes.	
	→ ·	[3]
(d.ii)	Explain why increasing the temperature increases the rate of reaction.	[2]
(d.iii)	Vanadium pentoxide, V_2O_5 , is used as a catalyst. Explain how a catalyst increases the rate of a reaction.	

		[2
(d.iv)	During the reaction, V_2O_5 changes to V_2O_4 . Identify the oxidation states of vanadium in each compound.	
	V ₂ O ₅ :	[1
(d.v)	State the equilibrium constant expression, K_c , for the production of SO_3 .	
	$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$	[1
(d.vi)	Outline, with a reason, the effect of increasing the pressure on the position of equilibrium.	[1
[Massin	221 may man why 221	
	mum mark: 22] r trioxide is an important compound in industry.	
(a)	Sulfur trioxide has more than one possible Lewis (electron dot)	

2.

structure.

	Sketch two Lewis (electron dot) structures for SO_3 , one of which obeys the octet rule and one of which does not.		
	Obeys octet rule:		
	Does not obey octet rule:		
i)	State how chemists decide which Lewis (electron dot) structure is more stable.		
 .iii)	Predict the length of each S to O bond in pm. Use section 10 of the data booklet.		
)	Suggest why atmospheric $SO_3(g)$ is an environmental concern.		
	State the name of a post-combustion method used to lower the quantity of $SO_3(g)$ released to the atmosphere.		

$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \Delta H^\Theta < 0$ (d.i) Sketch a potential energy profile for this reaction on the axes provided. Label E_a and include labels on the axes.	
────────────────────────────────────	[3]
(d.ii) Explain why increasing the temperature increases the rate of	
reaction.	[2]
(d.iii) Vanadium pentoxide, V_2O_5 , is used as a catalyst. Explain how a	
catalyst increases the rate of a reaction.	[2]

(d.iv)	During the reaction, V_2O_5 changes to V_2O_4 . Identify the oxidation states of vanadium in each compound.			
(d.v)			tant expression, K_{c} , for the proc	luction
	of 1 m	nol of SO_3 .		
	SO ₂ (g	$(g) + \frac{1}{2}O_2(g) \rightleftharpoons SO_3(g)$	g)	
 (d.vi)	 Calcu	late the entropy char	 nge, Δ S^{Θ} , in J K ⁻¹ mol ⁻¹ , for the	
(u.v 1)			(g). Use the absolute entropy	values
		in the table.		
			S [⊕] /J K ⁻¹ mol ⁻¹	
		CO (**)		
		SO ₂ (g)	248.2	_
		O ₂ (g)	205.2	
		SO ₃ (g)	256.8	
 (d.vii)	Outlir	 ne, with reference to t	:he equation, why the sign for	the
(31111)			in part (vi) is expected.	

(d.viii)	Calculate the value of Gibbs free energy, ΔG^{Θ} , of the reaction, in kJ mol ⁻¹ , at 773 K. Use section 1 of the data booklet and $\Delta H^{\Theta} = -98.5$ kJ mol ⁻¹ . If you did not obtain an answer for (d)(vi), use				
	$-100\mathrm{JK^{-1}}$ mol $^{-1}$, although this is not the correct answer.	[1]			
(d.ix)	Calculate the value of the equilibrium constant for the				
	formation of SO ₃ (g) at 773 K. Use sections 1 and 2 of the data				
	booklet. If you did not obtain an answer to (d)(viii), use -25.0 kJ mol ^{-1} , although this is not the correct answer.	[2]			
(d.x)	A flask contains 0.120 mol dm $^{-3}$ SO $_2$ (g), 0.050 mol dm $^{-3}$ O $_2$ (g) and 0.150 mol dm $^{-3}$ SO $_3$ (g) at 773 K. Deduce whether the				
	system is at equilibrium and in which direction the reaction will				
	proceed spontaneously if not at equilibrium.	[2]			

The equilibrium constant for $N_2O_4(g) \Leftrightarrow 2NO_2(g)$ is $K_c = 0.0059$ at 298 K.

What is the value of the equilibrium constant at 298 K for $4NO_2(g) \rightleftharpoons 2N_2O_4(g)$?

A.
$$\frac{1}{0.0059}$$

B.
$$\frac{1}{0.0059^2}$$

C. 0.0059

D.
$$0.0059^2$$

4. [Maximum mark: 1]

Which pair of changes will both shift the position of equilibrium to the left?

$$2H_2(g) + CO(g) \rightleftharpoons CH_3OH(g)$$
 $\Delta H = -92 \text{ kJ}$

	Temperature	Pressure
A.	increase	increase
B.	decrease	decrease
C.	increase	decrease
D.	decrease	increase

[1]

5. [Maximum mark: 1]

Consider the equilibrium between dinitrogen tetraoxide, $N_2O_4(g)$, and nitrogen dioxide, $NO_2(g)$.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

At a certain temperature, the K_c value for this reaction is 5. What is the K_c value for the reaction below at the same temperature?

$$2NO_2(g) \rightleftharpoons N_2O_4(g)$$

- A. 5
- B. $\frac{1}{5}$
- C. $\sqrt{5}$
- D. 5²

[1]

6. [Maximum mark: 1]

The value of K_c for the equilibrium between $H_2(g)$ and $I_2(g)$ is 51 at 720 K. Which combination is correct?

$$H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$$

Position of equilibrium	Free energy change at 720 K	
products are favoured	ΔG is positive	
products are favoured	ΔG is negative	
reactants are favoured	ΔG is positive	
reactants are favoured	ΔG is negative	
	products are favoured products are favoured reactants are favoured	

[1]

7. [Maximum mark: 8]

The complex ion $[CuCl_4]^{2-}$ is formed when concentrated hydrochloric acid is added to an aqueous solution of hydrated copper(II) ions.

Cu ²⁺ (a	$aq) + 4CI^{-}(aq) \rightleftharpoons [CuCl_4]^{2-}(aq)$	
Blue (a)	Yellow State an expression for the equilibrium constant, $K_{\rm c}$, corresponding to this equation.	[1]
(b)	The numerical value of K_c under standard conditions is 4.2×10^5 . Calculate the ratio when the chloride ion concentration is 0.210 mol dm ⁻³ .	[2]
 (c)	Explain why Cu ²⁺ (aq) is coloured, with reference to its electronic structure and section 15 of the data booklet.	[3]
	electionic structure and section 15 of the data sookiet.	[3]
(d)	State, with a reason, the effect of an increase in temperature on the value of K_c . $\Delta H^{\boxtimes} > 0$	[1]

((e) State, with a reason, the effect of adding aqueous silver nitrate, $AgNO_3(aq), on the position of this equilibrium.$	
	$Ag^{+}(aq) + CI^{-}(aq) \rightleftharpoons AgCI(s)$	[1]
١	[Maximum mark: 1] Which of the following equilibria would shift left with an increase in pressure?	
,	A. $H_2(g) + Br_2(g) \rightleftharpoons 2HBr(g)$	
[B. $C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$	
(C. $NO(g) + \frac{1}{2}O_2(g) \rightleftharpoons NO_2(g)$	
[D. $4NH_3(g) + 3O_2(g) \rightleftharpoons 2N_2(g) + 6H_2O(I)$	
		[1]
[[Maximum mark: 1]	
	What can increase the amount of ${\sf CS}_2(g)$ present in the following system already at equilibrium?	
	$S_2Cl_2(I) + CCl_4(I) \rightleftharpoons CS_2(g) + 3Cl_2(g)$ $\Delta H^{\boxtimes} = 84.3 \text{ kJ}$	

A. Adding a catalyst to the system

- B. Increasing the volume of the reaction vessel
- C. Adding some $Cl_2(g)$ to the system
- D. Cooling the system

[1]

10. [Maximum mark: 1]

The system 2A (g) \rightleftharpoons B (g) + 3C (g) is at equilibrium where the concentrations of A, B and C are all 2 mol dm⁻³.

What is the value of the equilibrium constant, K_c ?

- A. 2
- B. 3
- C. 4
- D. 8

[1]

11. [Maximum mark: 1]

The exothermic reaction $I_2(g)+3Cl_2(g)\rightleftharpoons 2\mathbf{I}Cl_3(g)$ is at equilibrium in a fixed volume. What is correct about the reaction quotient, ϱ , and shift in position of equilibrium the instant temperature is raised?

- A. Q > K, equilibrium shifts right towards products.
- B. Q > K, equilibrium shifts left towards reactants.
- C. Q < K, equilibrium shifts right towards products.

12. [Maximum mark: 1]

What is the intercept on the y-axis when a graph of $\ln k$ is plotted against $\frac{1}{T}$ on the x-axis?

$$\ln k = -rac{E_a}{RT} + \ln A$$

A. InA

B.
$$-\frac{E_{\rm a}}{R}$$

C.
$$-\frac{R}{E_{\rm a}}$$

D.
$$E_{
m a}$$

© International Baccalaureate Organization, 2025