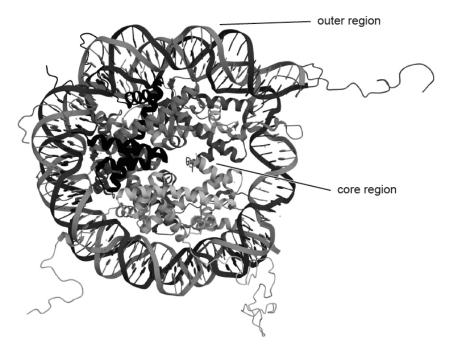

A2.2 Cell structure [71 marks]

1. [Maximum mark: 7]

The micrograph shows a transverse section of a leaf from a flowering plant.

[Source: Houseman, J. and Ford, M., 2014. Diat leaf L. [image online] Available at: https://commons.wikimedia.org/wiki/File:Dicot_leaf_L.jpg Distributed under the terms of the Creative Commons Attribution License 4.0 (CC BY-SA 4.0). https://creativecommons.org/licenses/by-sa/4.0/deed.en Image cropped and re-coloured.]

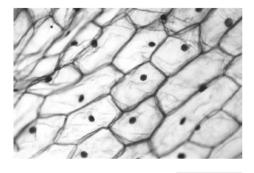

- (a) Draw a plan diagram in the right-hand box with labels to show the distribution of tissues in this transverse section of a leaf.
- (b) Calculate the actual thickness of the leaf, from upper to lower surface along the line a–b, showing your working.

(c) Suggest a reason for using a lower power objective lens when first focusing on a slide under the microscope.

[3]

[2]

	(d) Identify one adaptation of the leaf for the absorption of light visible in this micrograph.	[1]
2.	[Maximum mark: 1] Which cell organelle is common to all prokaryotic and eukaryotic cells?	
	A. Nucleus	
	B. Cell wall	
	C. Vesicle	
	D. Ribosome	[1]
3.	[Maximum mark: 8] Molecular visualization software was used to produce the representation of a human nucleosome.	


[Source: RCSB Protein Data Bank, n.d. *X-Ray Structure of the Nudeosome Core Particle, NCP147, at 1.9 A Resolution.* [image online] Available at: https://www.rcsb.org/3d-sequence/1KX5?assemblyl [Accessed 18 June 2024]. Source adapted.]

(a)	Using the image,	
(a.i)	identify, giving a reason, the molecule found in the outer region.	[1]
 (a.ii)	describe the structure of the core region.	[2]
(b)	Suggest a reason that nucleosomes are absent in bacterial DNA.	[1]

		• • • • • • • • • • • • • • • • • • • •		 	
c)	Explain how l	DNA can be used in clad	istics.	 	[4]

4. [Maximum mark: 5]

The image shows epidermis tissue from a bulb of the onion plant (Allium cepa) viewed using a light microscope.

50 μm

[Source: Peter Hermes Furian, 2017. Onion epidermis with large cells under light microscope. [image online]

Available at: https://www.gettyimages.co.uk/detail/photo/onion-epidermis-with-large-cells-under-light-royalty-freeimage/655178448 [Accessed 29 April 2024]. Source adapted.]

(a)	Calculate the magnification of the image.	
		[1]
(b)	State the item of equipment that a student could use to accurately measure the length of an	
	onion cell viewed using a light microscope.	[1]
(c)	Draw a labelled diagram of a nucleus from a eukaryotic cell, such as an onion epidermis cell, as	
	seen using an electron microscope.	[3]
[Max	imum mark: 15]	
	ryotes are a diverse group of organisms, including animals and plants.	
(a)	Distinguish between structures in animal and plant cells.	[3]
(b)	Outline adaptations of animals to herbivory and ways in which plants are adapted to resist herbivores.	[4]

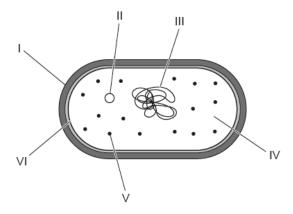
5.

- /	· - \	C	ne processes of mitosis and		
- (\sim	I OMNATA AND CONTRACT TO	ID NEACCECE AT MITAGE AND A	CVICKINACIC IN ANIMAL AN	a niant colic
١.	· • /	Compare and Commast ti	16 010663363 01 111160313 0110 1	CV LOKII ICSIS III AI III III AI AI I	a piant cens

[8]

6. [Maximum mark: 6]

Eukaryotic cells have certain characteristics in common.


[Source: Adobe Stock / Andrea Danti.]

(a)	State a function for structures X and Y labelled in the cell diagram.	
	X:	
	Y:	[2]
(b)	Describe three different processes that allow molecules to pass through the lipid bilayer of a	
	cell.	[3]
(c)	Outline one difference between the structure of prokaryotic and eukaryotic cells.	[1]

7. [Maximum mark: 1]

The diagram shows a prokaryotic cell.

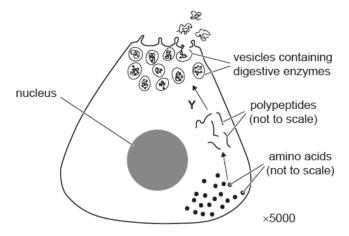
[1]

Which two structures are correctly identified?

- A. I is the cell wall and II is a vesicle.
- B. III is a chromosome and IV is the matrix.
- C. V is a ribosome and VI is the plasma membrane.
- D. III is the nucleus and V is a vesicle.

8. [Maximum mark: 1]

Single-celled organisms of the genus *Paramecium* carry out all functions of life.

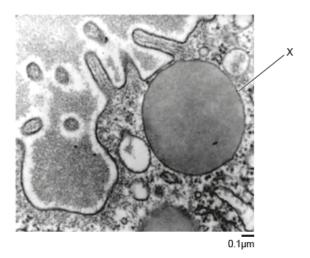

[1]

Which functions of life are performed by the contractile vacuole?

- A. Nutrition
- B. Reproduction
- C. Homeostasis
- D. Metabolism

9. [Maximum mark: 1]

The diagram summarizes the production and secretion of digestive enzymes in an exocrine gland cell of the pancreas.

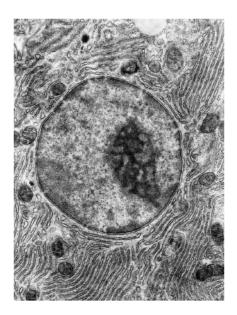

Which cell organelle is involved at **Y**?

- A. Rough endoplasmic reticulum
- B. Golgi apparatus
- C. Lysosome

D. Ribosome [1]

10. [Maximum mark: 5]

The electron micrograph shows part of a pancreas cell that secretes digestive enzymes.


[Source: Rothman, J.E. (2014), The Principle of Membrane Fusion in the Cell (Nobel Lecture). Angew. Chem. Int. Ed., 53: 12676–12694. https://doi.org/10.1002/anie.201402380. Source adapted.]

(a)	Calculate the magnification of the micrograph.	[1]
(b)	Identify the organelle labelled X.	[1]
(c)	State the organelle where digestive enzymes are synthesised.	[1]

(d)	Identify the process by which digestive enzymes are secreted.	[1]
(e)	The pancreas secretes other chemicals as well as enzymes. State an example of a chemical and the type of pancreatic cell that secretes it.	[1]

11. [Maximum mark: 1]

The image shows the nucleus of a cell from the pancreas that is surrounded by endoplasmic reticulum.

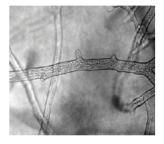
[Source: Fawcett, D.W., n.d. [Micrograph of Myotis lucifugus]. A vailable at: https://www.sciencephoto.com/media/214818/view/pancreatic-cell-nucleus-tem [Accessed 27 May 2024].]

What describes this nucleus?

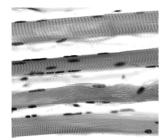
- A. It is composed of highly folded internal membranes and a liquid matrix.
- B. It contains ribosomes and is the main site of protein synthesis in a cell.
- C. It contains membrane-bound organelles.

12. [Maximum mark: 1]

The image shows a single *Paramecium* with food vacuoles that contain ingested cells of the unicellular green alga *Chlorella*.


[Source: Summerer, M., Sonntag, B. and Sommaruga, R., 2007. An experimental test of the symbiosis specificity between the ciliate *Paramedium bursaria* and strains of the unicellular green alga *Chlorella. Environ Microbiol.* 9(8), 2117–22. [e-journal] Available at: https://pubmed.ncbi.nlm.nih.gov/17635555/ [Accessed 11 April 2023]. Source adapted.]

What can be deduced about Paramecium?


- A. It is an autotroph.
- B. It cannot perform all of the functions of life.
- C. It carries out heterotrophic nutrition.
- D. It is a prokaryote. [1]

13. [Maximum mark: 1]

The micrographs show two examples of atypical cells.

Striated muscle fibres

[Source: Left: Clayton, Michael W., n.d., University of Wisconsin Libraries. Coenocytic hyphae of Rhizopus. [image online] Available at: https://search.library.wisc.edu/digital/APHT7CUN235E5D8M#dci-item-details [Accessed 31 May 2024]. Source adapted.

Right: Berkshire Community College Bioscience Image Library. [image online] Available
at: https://commons.wikimedia.org/wiki/File:Muscle_Tissue_Skeletal_Muscle_Fibers_(40153601630).jpg Licensed under the CC0 1.0
Universal Public Domain Dedication [Accessed 1 September 2022]. Source adapted.]

Which feature shared by both types of cells makes them atypical?

[1]

- A. Both have cell walls.
- B. Both have several nuclei.
- C. Both lack membrane-bound organelles.
- D. Both are divided into compartments.
- **14.** [Maximum mark: 1]

How does the endosymbiotic theory explain the origin of mitochondria in eukaryotes?

- A. Autotrophic eukaryotes fused with photosynthetic bacteria.
- B. Small aerobic bacteria survived inside anaerobic prokaryotes.
- C. Anaerobic prokaryotes were engulfed by small aerobic bacteria.
- D. Invaginations occurred in large prokaryotes to increase surface area for gas exchange.

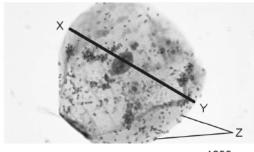
[1]

15. [Maximum mark: 1]

How is a prokaryotic cell different from a eukaryotic cell?

- A. Eukaryotic cells are compartmentalized, whereas prokaryotic cells are not.
- B. Prokaryotic cells do not contain ribosomes, whereas eukaryotic cells do.

- C. Eukaryotic cells contain DNA, whereas prokaryotic cells do not.
- D. Prokaryotic cells have a cell wall, whereas eukaryotic cells do not.


[1]

[1]

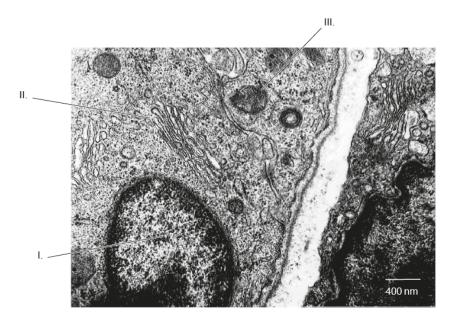
16. [Maximum mark: 5]

(a)

The micrograph shows a human cheek cell magnified with a light microscope.

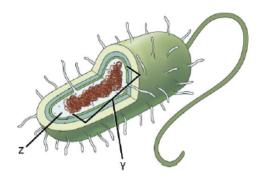
Calculate the width of the cheek cell from X to Y.

1000×


[Source: Fox, E. (2022, February 12). Micrograph human cheek epithelial cells methylene blue 1000X p000018. OER Commons. https://oercommons.org/courseware/lesson/89980.]

(b)	Explain what causes the irregular shape of the cheek cells rather than the uniform shape of plant cells.	[2]
(c)	Describe what would happen to the cheek cell if it was placed in a hypertonic salt solution.	[1]

d) In	addition to the cheek cell, the micrograph shows smaller single cells. Two of these cells are
	pelled Z. Predict with a reason what the single cells could be.
	n mark: 3] internal structures of a prokaryotic cell within the diagram.


18. [Maximum mark: 7]

The electron micrograph shows parts of two cells.

[Source: (a)	Howard, Louisa. https://commons.wikimedia.org/wiki/File:Pancreatic_cellsTEM.jpg. Public domain.] Identify organelles I to III.	
	l:	
	ll:	
	III:	[3]
(b)	Using evidence from the micrograph, deduce whether the cells are prokaryotic or eukaryotic.	[2]
 (c)	State the function of flagella and ribosomes in prokaryotic cells.	
	Flagella:	
	Ribosomes:	[2]

The diagram shows a prokaryotic cell.

[Source: © Rice University. 1999–2023 Figure 4.5 Prokaryotic cell. [image online] Available at: https://openstax.org/apps/archive/20220815.182343/resources/50163f8ff80f335574f41bfc10cc49a1e87cf9df [Accessed 13 January 2023].]

What are the structures labelled Y and Z?

	Υ	Z
A.	Nucleus	70 S ribosome
B.	Nucleoid	80S ribosome
C.	Nucleus	80S ribosome
D.	Nucleoid	70S ribosome

 					 •																				•						 	 	 	 	

[1]