measuring enthalpy changes [15 marks]

1. [Maximum mark: 1]

What is the enthalpy change, in kJ mol^{-1} , when 107 g of solid ammonium chloride, NH₄Cl, are added to water to form 50.0 cm³ of solution, producing a maximum decrease of 28 °C?

$$M_r NH_4CI = 53.5$$

Specific heat capacity of water= $4.18 \,\mathrm{J}\,\mathrm{g}^{-1}\,\mathrm{K}^{-1}$

A.
$$\Delta H = rac{-50.0 imes 4.18 imes (28 + 273)}{2 imes 1000}$$

B.
$$\Delta H = rac{-50.0 imes4.18 imes28}{2 imes1000}$$

c.
$$\Delta H = rac{50.0 imes 4.18 imes (28 + 273)}{2 imes 1000}$$

D.
$$\Delta H = rac{50.0 imes4.18 imes28}{2 imes1000}$$

2. [Maximum mark: 1]

How much heat energy, in J, does a 2.00 g block of copper metal at 65.0 $^{\circ}$ C lose when it is dropped into 100.0 cm₃ of water and cools to 15.0 $^{\circ}$ C?

The specific heat capacity of copper is 0.385 J g^{-1} K⁻¹ and the specific heat capacity of water is 4.18 J g^{-1} K⁻¹.

A.
$$2.00 \times 0.385 \times (65.0 - 15.0)$$

B.
$$2.00 \times 0.385 \times (65.0 - 15.0 + 273)$$

C.
$$100.0 \times 4.18 \times (65.0 - 15.0)$$

D.
$$100.0 \times 4.18 \times (65.0 - 15.0 + 273)$$

[1]

[1]

3. [Maximum mark: 1]

Which statement about a chemical reaction involving covalent molecules is correct?

- A. More energy is given out if the products are in the gaseous rather than the liquid state.
- B. If the products have stronger bonds than the reactants the reaction is exothermic.
- C. Enthalpy change of reaction is the sum of the bond enthalpies of the products minus the sum of the bond enthalpies of the reactants.
- D. Forming bonds absorbs the activation energy.

[1]

4. [Maximum mark: 10]

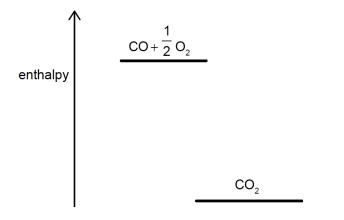
The water-gas shift reaction is another way to manufacture hydrogen.

$$CO(g) + H_2O(g) \rightleftharpoons CO_2(g) + H_2(g)$$
 $\Delta H = -41 \text{ kJ mol}^{-1}$

(a.i) State the oxidation state of carbon in carbon monoxide and carbon dioxide.

carbon monoxide:
carbon dioxide:

(a.ii) Identify the oxidising and reducing agents, and the species oxidised and reduced, in the forward reaction.


	CO(g)	H ₂ O (g)
oxidising or reducing agent?		
species oxidised or reduced?		

[2]

[1]

(b.i)	Draw the Lewis structure of carbon dioxide.	[1]
 (b.ii)	Annotate the Lewis structure in (b)(i) to show the polarity of the	
	bonds by adding the symbols $\delta+$ and $\delta-$ as appropriate.	[1]
(b.iii)	Explain the molecular geometry and polarity of the carbon dioxide molecule.	[2]
(b.iv)	Outline why the increase in carbon dioxide concentration in the	
	atmosphere is of international concern.	[2]

(b.v) Explain, referring to the enthalpy profile shown, whether carbon monoxide is more or less stable than carbon dioxide.

[1]

.....

5. [Maximum mark: 1]

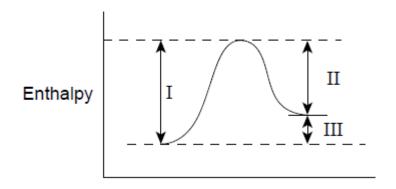
Which reactions release heat?

I.
$$C(s) + O_2(g) \rightarrow CO_2(g)$$

II.
$$Na^+(g) + e^- \rightarrow Na(g)$$

III.
$$NH_3(g) \rightarrow NH_3(I)$$

A. I and II only


B. I and III only

C. II and III only

D. I, II and III

6. [Maximum mark: 1]

Which expression represents the calculation of ΔH ?

- A. I-II
- B. II I
- c. I III

D.
$$II-III$$

© International Baccalaureate Organization, 2025

[1]