Entropy and spontaneity [19 marks]

1. [Maximum mark: 1]

What are the signs of ΔH^{\boxtimes} and ΔS^{\boxtimes} for this reaction that is non-spontaneous at high temperatures and spontaneous at low temperatures?

$$\Delta G^{\boxtimes} = \Delta H^{\boxtimes} - \mathsf{T} \Delta S^{\boxtimes}$$

$$SO_3(I) + CaO(s) \rightarrow CaSO_4(s)$$

	ΔH ^e	ΔS ^e
A.	+	+
B.	_	_
C.	-	+
D.	+	-

[1]

2. [Maximum mark: 1]

Which of the following statements is correct for the position of equilibrium of a reaction?

$$\Delta G^{\boxtimes} = -\mathsf{RTIn}K$$

- I. It will always shift to the right when temperature increases.
- II. If $\Delta G^{\boxtimes} < 0$, then K > 1 and products are favoured over reactants.
- III. If $\Delta G^{\boxtimes} = 0$, then K = 1 and [reactants] and [products] are approximately equal.
- A. I and II only

- B. I and III only
- C. II and III only

D. I, II and III

[1]

3. [Maximum mark: 1]

Which change results in the greatest decrease in entropy?

- A. NaCl (s) \rightarrow NaCl (aq)
- B. $2NO_2(g) \rightarrow N_2O_4(g)$
- C. Mg (s) + 2HCl (aq) \rightarrow MgCl₂(aq) + H₂(g)
- D. $CH_4(g) + H_2O(g) \rightarrow CO(g) + 3H_2(g)$

[1]

4. [Maximum mark: 1]

Which combination is correct for a spontaneous reaction?

	E [⊕]	$\Delta {f G}^{\ominus}$
A.	positive	positive
B.	positive	negative
C.	negative	positive
D.	negative	negative

[1]

5. [Maximum mark: 1]

Which combination of values of ΔH and ΔS belongs to a reaction which is spontaneous at low temperatures but not spontaneous at high temperatures?

	$\Delta oldsymbol{H}$	ΔS
A.	Negative	Negative
B.	Negative	Positive
C.	Positive	Positive
D.	Positive	Negative

[1]

6. [Maximum mark: 13]
Carbon disulfide, CS₂, undergoes gas phase hydrolysis according to the overall equation

$$CS_2(g) + 2H_2O(g) \rightleftharpoons CO_2(g) + 2H_2S(g)$$

(a.i) Calculate the enthalpy change in this reaction from section 12 of the data booklet and the given values:

	CS ₂ (g)	H ₂ S(g)
$\Delta H_{\mathrm{f}}^{\Theta}$	+88.7 kJ mol ⁻¹	−20.6 kJ mol ^{−1}

(a.ii)	Outline why you reaction to be qu		the entropy cha	nge for this	[1]
 (a.iii)	Neglecting any e section 1 and sec equilibrium cons	entropy change tion 2 of the da	ata booklet to e	er to (a)(i),	
	(If you did not ok mol ⁻¹ , although			value of [–] 50.0 kJ	[2]
(a.iv)	The concentration	ons of the speci	es involved at e	quilibrium are:	
	CS ₂ (g)	H ₂ O (g)	CO ₂ (g)	H₂S (g)	

 $x \, \mathrm{mol} \, \mathrm{dm}^{\mathrm{-3}}$

 $2x \operatorname{moldm}^{-3}$

 $0.0400\,mol\,dm^{-3}$

 $0.100\,mol\,dm^{-3}$

	Calculate the numerical value of X, the concentration of carbon dioxide at equilibrium, using your answer from (a)(iii).	[2]
	(If you did not obtain an answer to (a)(iii), then use a value of 1.68×10^5 , although this is not the correct answer.)	[ک]
(b)	Deduce the molecular geometries of CS_2 and H_2S , and the reason why they are different.	
	Molecular geometry CS ₂ :	
	Molecular geometry H ₂ S:	
	Reason for difference:	
		[2]
(c)	Sulfur has a number of natural isotopes and a sample of sulfur was enriched in $^{36}_{16}{ m S}$, to produce a mixture with the following composition:	

Isotope	Percent
³² S	90%
³³ ₁₆ S	1%
³⁴ ₁₆ S	4 %
³⁶ S	5%

(c.i)	Calculate the relative atomic mass of this enriched sample,	
	correct to two decimal places.	[2]
(c.ii)	In naturally occurring sulfur, the relative abundance of $^{36}_{16}\mathrm{S}$ is	
()		
	only 0.0100 %. Calculate the number of atoms of this isotope	
	that would be present in 1.00 g of natural sulfur. Use sections 2	
	and 7 of the data booklet.	[2]

7. [Maximum mark: 1]

Which changes would increase the rate of an exothermic reaction?

	Temperature	Particle size
A.	Increase	Decrease
B.	Increase	Increase
C.	Decrease	Increase
D.	Decrease	Decrease

© International Baccalaureate Organization, 2025

[1]