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From measurements to a result 
 

Measuring 

No experimental measurement technique is rigorously reliable. Every measurement is subject to error, so 
there is no such thing as an exact measurement. The ‘true’ value of a measurement is technically inaccessible. 
An experimental result must therefore always take this error into account. 

1. Sources of error 
a. Random error 

An error is said to be random when a large number of measurements of the same quantity under 
the same conditions show that the different results are distributed on either side of the mean 
value obtained. 
The origin of a random error is generally linked to the inaccuracy of the measuring device 
(discrete graduations) and to the ‘lack of rigour’ of the experimenter (this contribution is, 
however, difficult to quantify, but can sometimes be estimated). 
Note:  Sometimes the random error can be linked to the phenomenon being measured itself, if it is particularly unstable. Weather forecasts, for 

example, are based on data that is highly unstable and subject to considerable variability. 

When an experiment is subject to random error, the results of repeated measurements under the same 
conditions are far apart. However, this does not prevent the mean value from being correct. 

b. Systematic error 
An error is said to be systematic when it always takes the same value on each repeated 
measurement. It always affects the result in the same direction. 
The origin of a systematic error is generally a defect in the measuring equipment or the experimental 
method. It is difficult to see in the raw data, but can sometimes be easily corrected when the data 
is processed. 

When an experiment is marred by a systematic error, the results of repeated measurements under the 
same conditions are very close. The instrument used is therefore accurate. However, the measured value is 
incorrect. 

2. Quality vs. accuracy 
Let X be the quantity measured 

a. Standard uncertainty 
The standard uncertainty, or uncertainty of measurement, is a parameter associated with the result of the 
measurement, enabling its quality to be judged. 
Noted U(X), the standard uncertainty is a number of the same unit as the measurement made. It is always 
written with a single significant figure (rounded upwards). 
The experimental result will be written as: 𝑿 = 𝑿𝒎𝒆𝒂𝒔𝒖𝒓𝒆𝒅 +𝑼(𝑿) 

b. Some common uncertainties 
Generally speaking, the standard uncertainty of an instrument corresponds to half its gradation. 
When using chemistry equipment, standard uncertainties are generally supplied by the manufacturer and 
indicated on the equipment. 
Ex: Measure a length l1 = 15.2 cm using a ruler graduated in mm. 

U(l1) = 0.5 mm, and the result of the measurement is as follows: 𝑙 = 152	 ± 0,5	𝑚𝑚 
If the ruler used is graduated in half-mm, we have U(l2) = 0,25 mm, and 𝑙 = 152	 ± 0,3	𝑚𝑚. 

We measure a length l3 = 384000 km with a 1 m long stick: 𝑙 = 384000000 ± 0,5	𝑚 

c. Relative uncertainty 
To determine the accuracy of a measurement, the standard uncertainty is no longer sufficient. We need 

to calculate its relative uncertainty, or precision, ∆𝑿
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Processing 

Because of the existence of systematic and random errors, using raw data can lead to false conclusions. The 
BEST WAY to highlight these errors is visually, through the TRACE OF A GRAPH. 

1. Representation of experimental points 
The pairs of measurement points are placed on a graph with a carefully chosen coordinate system. The points 
should be represented by a cross. 
This cross is then surrounded by an uncertainty rectangle, obtained from the absolute uncertainty of each of 
the measured quantities. Because of the measurement uncertainties, the pairs obtained are unlikely to be 
‘true’ pairs. However, by evaluating the absolute uncertainties, it can be stated that the ‘true’ pair lies within 
the uncertainty rectangle. 
Note: The axes MUST be named (size represented + unit). 
 The axes MUST be graduated. 
 The graph MUST have a title. 
 Points should NEVER be joined by line segments. 

2. Treatment of outliers 
By viewing the resulting cloud of points, a trend can be identified, generally associated with a known 
mathematical function. Any point that does not follow this trend needs to be re-examined, either through a 
new measurement or by eliminating it from the series. 
Note: Many scientific discoveries have been made as a result of these aberrant points. Their existence calls into question a theoretical model, 

and leads to a new model that includes this point... and the previous results. 
For example, Wien's law worked very well at long wavelengths, but gave false predictions for UV radiation. Max Planck's quantification of 
light made it possible to take this particularity into account, while still giving accurate results at long wavelengths. 

3. Linearisation 
When the trend shown on the graph is not linear, the expression of the quantities represented on the axes 
can be modified to produce a straight line. This operation, known as linearisation, makes it easier to use the 
graph. 
Once the straight line has been obtained, a common source of systematic error can often be identified. 
Indeed, many phenomena can be modelled by a linear relationship, i.e. by a straight line passing through the 
origin. The fact that the line does not pass through the origin is therefore a sign of systematic error, which 
will be eliminated when the graph is used.  

4. Adding a trend line 
Once the curve has been linearised, a trend line is drawn, in the form of an average straight line. 
Any line passing through all the uncertainty rectangles is considered to be the mean line. If this is not possible, 
the measurement protocol must be repeated, either by carrying out new measurements with greater rigour, 
or by reassessing the standard uncertainties. 
Note: Because of measurement uncertainties, several average lines can sometimes be drawn. Each of them is valid. 
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Modelling 

1. From slope to value 
When studying a phenomenon, the magnitude to be determined is often linked to the slope of the mean 
line. Calculating this slope gives access to it. 
Note: The slope of a line is independent of its y-intercept. A systematic error therefore has no effect on its value, and is therefore eliminated when 

determining it. 

2. Uncertainty of the calculated value 
a. A few rules for calculating uncertainties 

• If 𝑋 = 𝑎 + 𝑏, or 𝑋 = 𝑎 − 𝑏, standard uncertainty varies: 

𝑼(𝑿) = +,𝑼(𝒂).𝟐 + ,𝑼(𝒃).𝟐 

Ex: 𝑎 = 204,3 ± 0,3	𝑚𝑚	and	𝑏 = 191,2 ± 0,3	𝑚𝑚 ⇒ F	𝐺- = 395,5 ± 0,4	𝑚𝑚
𝐺( = 13,1 ± 0,4	𝑚𝑚  

• If 𝑋 = 𝑎H × 𝑏I, or 𝑋 = J!
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b. Presentation of the final value 
After determining the standard uncertainty of the quantity under study, the result is presented in the form 
of an interval:  

𝑿 = 𝑿𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 ±𝑼(𝑿) 
𝑿 ∈ [𝑿𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 −𝑼(𝑿); 𝑿𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅 +𝑼(𝑿)] 

3. Comparison with a theoretical value 
Note: The same notation is used to designate an uncertainty or a deviation. What is calculated depends on the context. 

a. Difference between measured value and theoretical value 
When a value measured experimentally is compared with a reference value, a deviation is determined. 
The absolute deviation is calculated as follows: ∆𝑿 = =𝑿𝒓𝒆𝒇 − 𝑿𝒆𝒙𝒑= 

The relative deviation is calculated as follows: ∆𝑿
𝑿
= >𝑿𝒓𝒆𝒇V𝑿𝒆𝒙𝒑

𝑿𝒓𝒆𝒇
> 

b. z-score 
The z-score is the result of comparing the absolute deviation with the standard uncertainty: 

𝑧 =
∆𝑿
𝑼(𝑿)

=
=𝑿𝒓𝒆𝒇 − 𝑿𝒆𝒙𝒑=

𝑼(𝑿)
 

It represents an assessment of the agreement between the measurement result and the reference value of 
the quantity G. 
Note: The experimental result is considered to be compatible with the reference value when the z-score is less than 2. 
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Improving results through collaboration 

When determining the value of a quantity, certain systematic errors may go undetected. To reduce this error, 
the result must be compared with that of other independent experiments. A statistical study of this new 
series will then enable us to approach a theoretical value. 

1. Some basics in statistics 
a. Mean value 

The mean 𝑋@ of the n measurements in a sample is the best estimator of the sample of n independent 

measurements: 𝑿A = 𝑿𝟏W𝑿𝟐W𝑿𝟑W⋯W𝑿𝒏
𝒏

= ∑ 𝑮𝒊𝒏
𝟏
𝒏

 
b. Standard deviation 

The best estimate of the dispersion of a series of measurements is measured by the standard deviation 
s: 

𝝈𝒏V𝟏 = 2∑ (𝑿𝒊 − 𝑿A)𝒏
𝟏
𝒏 − 𝟏

 

Note: The mean and standard deviation of a series of measurements can be obtained using the calculator's STAT mode.. 

2. Confidence interval 
A confidence interval is an interval in which the value sought has a certain probability of being found. 

Ex: The confidence interval at 95% is the interval in which the probability to find the sought value is 95 %. 

The size of the confidence interval is determined from the expanded uncertainty U(X)% : 

𝑼(𝑿)% = 𝒕%
𝝈𝒏V𝟏
√𝒏

 

t% is a coefficient called the Student coefficient. Its value depends on the number of measurements in 
the series and the desired confidence level: 

 
Note: Usually, we consider t95% = 2 et t99% = 3 

3. Presentation of the result 
The definite result of the experiment is presented as: 𝑿 = 𝑿A ± 𝑼(𝑿)% 


